

第14章 部材の座屈

ポイント:部材の線形座屈を行う 弾性座屈と固有値問題

構造物に無応力の状態から軸方向に圧縮荷重が加えられていくと、変 形が進み、内部にひずみが蓄えられる。これによって材の曲げ剛性は 徐々に低下し、ある荷重状態でそれ以後の増分荷重がないにも関わらず、 変形が急激に拡大するという現象を生じる。これを不安定現象、または 静的座屈と呼ぶ。この状態に達する前の荷重と変位の関係が線形である と、これを線形の座屈と呼ぶ。本章では、部材の座屈とその特性を学ぶ。 ここでは、棒材の座屈であるオイラー座屈を例にとり、理論解と SPACE で用いている有限要素法による解とを比較し、解の精度を検討する。

キーワード

線形座屈解析 固有値問題 最小固有値 固有ベクトル 座屈荷重 座屈モード 座屈長さ

本節では棒材の弾性座屈について説明する。ここでは、図 14-1 に示 すー端ピン・他端鉛直方向ローラー(水平拘束)支持で、材軸方向に集 中荷重 *P* が作用している場合について考える。同図には座屈する瞬間の 状態が示されており、モーメントの釣合は変形後の変位 *v*(*x*)を 用いて行う。

座標原点からx離れた点Aにおけるモーメントの釣合は、

で与えられる。さらに、梁の微分方程式

$$EI_{z}\frac{d^{2}v}{dx^{2}} = -M_{z}(x)$$
(14.2)

を式(14.1)に代入すると、次式のように座屈挙動を支配する方 程式が得られる。

14.2 Euler 座屈(長 柱の弾性座屈)

図 14-1 両端ピン支持の柱の座屈

ここで、 $k^2 = P/EI_{-}$ とおくと上式は以下の式となる。

上式の解は一般解に剛体的変位を加えると下式で与えられる。

一端ピン・他端ローラー支持に対する境界条件として、柱両端x=0,lで、v=0, M=0の4 つを用い、この条件を上式に適用すると、 A=C=D=0と $B\sin kx=0$ が得られる。従って、最後の条件式より、 B=0あるいは $\sin kl=0$ を得ることになる。前者のB=0は部材が真直ぐ となる解であり、また $B\neq0$ の場合は、部材が曲がりながら釣合ってい る状態を現す。後者の状態を座屈(buckling)と呼び、次式が成立する。

上式において、n=0はB=0と同じであり、従って、座屈条件を満足する値としてn=1,2,3・・が考えられる。上式を $k^2 = P/EI_2$ に代入すると、次のように座屈荷重が得られる。

$$P_{cr} = EI_z k^2 = (\frac{n\pi}{l})^2 EI_z; \quad (n = 1, 2, 3...)$$
(14.7)

また、式(14.6)を式(14.5)に代入すると、座屈時の変形状態が次式で与 えられ、これらは一般に座屈モードと呼ばれる。

$$v = B \sin \frac{n\pi}{l} x;$$
 (*n* = 1, 2, 3...)(14.8)

座屈条件を満足する値 n=1,2,3…に対応する座屈荷重と座屈モードを 図 14-2 に示す。

上式で示される座屈荷重の内、実際に生じる座屈荷重は、最も小さい 値n=1で与えられ、Euler(オイラー)座屈荷重 P_E と呼ばれる。座屈する 瞬間の圧縮応力 σ_E はEuler座屈荷重を断面積で割ることで求められる。

上式に、次式で定義する断面二次半径 i を用いると

弾性座屈応力 σ_E は次式となる。

さらに、材長と断面二次半径の比を、下式で示す新たなパラメータ細長 比 λ を 導入すると、

$$\lambda = \frac{l}{i} \tag{14.12}$$

式(14.9)の弾性座屈応力は、細長比のみの関数として以下のように与えられる。

$$\sigma_E = \frac{\pi^2 E}{\lambda^2}$$

上式で $\lambda \rightarrow 0$ となる太短い部材の極限では、弾性座 屈応力は $\sigma_E \rightarrow \infty$ となる。しかしながら、材の応力は 降伏応力 σ_y を超えることことはなく、式(14.13)の弾 性座屈応力の式は成立しない。このことから、座屈応 力と細長比の関係が図 14-3 のように得られる。

細長比が大きく、弾性座屈を生じる場合、座屈時の 軸方向ひずみは次式で与えられる。

上式のように弾性座屈時の軸方向ひずみは、軸力や弾 性係数とは無関係に細長比によってのみ決まる。(14.13)

図 14-3 弾性座屈時応力と細長比

式(14.7)はヤング係数が比例限度内であるとき成立するが、比例限度

を超えると成り立たない。さらに、式(14.13)で与えら れる応力が材の降伏応力 σ_y を超えると、部材は塑性座 屈することになる。

図 14-4 には、圧縮荷重を受ける材の座屈時の応力と 細長比の関係を示し、図 14-5 は材の応力とひずみの関 係を表す。図 14-4 では、縦軸は断面内の軸方向応力を、 また横軸は細長比を表す。比例限界応力 σ_p とオイラー 荷重との交点 B を通る細長比 λ_p は限界細長比と言い、 弾性座屈を生じる限界を示す最小の細長比となる。つま り、材の細長比が $\lambda > \lambda_p$ であれば弾性座屈を起こすが、 $\lambda \leq \lambda_p$ であれば非弾性座屈を起こすことになる。限界細 長比は、比例限界応力 σ_p を式(14.13)に代入し、少し整 理すると次式で表される。

図 14-4 で、曲線BCは弾性座屈を表し、その際の軸方 向応力は、図 14-3 の σ_p より小さな値であり、一般にこ の範囲の材は長柱と呼ばれる。曲線ABは、軸方向応力 が σ_p より σ_y の間の応力状態で生じる非弾性座屈時の σ - λ 関係を表し、一般にこの範囲の材は短柱と呼ばれる。

非弾性座屈に関する理論は、19世紀末に相次いで発表されている。例 えば、Engesser による接線係数理論、Engesser-Karman による換算係数 理論がある。前者の座屈時応力*σ*,は、式(14.11)右辺のヤング係数が接 線係数に、また、後者の座屈時応力*σ*,は同じく柱の曲げ引張側に生ずる 応力の除荷を考慮した換算係数に置き換えことで求められる。圧縮材の 実挙動と両理論との関係を明確に示したのが Shanley である。両理論の

座屈応力を上限・下限とし、実験値は その間に存在することを示した。図 14-6 には、接線係数理論と換算係数理 論による座屈時応力が示されている。 この 2 つの座屈時応力と Euler 応力と の関係は、次式で与えられる。

これら3つの理論の詳細については、

図 14-4 中心圧縮を受ける材の座屈応力

 λ_{p}

図 14-6 接線係数理論と換算係数理論による座屈時応力

「SPACE で学ぶ構造力学 静的解析編」を参照されたい。 非弾性領域の座屈応力を実験式として与え、現在でも各国で設計式と して使われている代表的な式を次に示す。

Gordon-Rankine式;	$\sigma_{cr} = \frac{\sigma_{y}}{1 + c\lambda}$	(14.17)
Johnson式;	$\sigma_{cr} = \sigma_y - k\lambda^2$	(14.18)
Tetmajor式;	$\sigma_{cr} = a - b\lambda$	(14.19)

ここで、 σ_y は材の降伏応力、c,k,a,bは材料によって決まる係数である。

建築学会規準では、比例限度応力を $\sigma_p = 0.6F$ と定め、先に述べた限 界細長比 Λ を式(14.13)より次式としている。ここで、Fは材の設計基 準強度を表す。

学会規準では、基準値 Fは、鉄骨降伏点の60%か σ_y のどちらか小さ い値を用いる。

$$0.6F = E(\frac{\pi}{\Lambda})^2$$
$$\Lambda = \pi \sqrt{\frac{E}{0.6F}}$$

·····(14.20)

設計用許容応力度 f_c は、材の細長比が限界細長比より大きい場合、弾 性座屈として Euler 式に安全率を考慮して式(14.23)で表され、また、 限界細長比より小さい場合は、非弾性であるとして、式(14.22)に示す ように細長比に関する 2 次式で与えられている。ここで使用される安全 率vは次式としている。ここでは、部材が細長くなるに従って、不完全 さ (Imperfection)、つまり形状初期不整や残留応力による、座屈荷重 に与える影響が著しくなるとして、細長比の大きい領域では大きな値と なっている。

ただし、上式は $\lambda < \Lambda$ の範囲であり、 $\lambda > \Lambda$ の場合、つまり弾性座屈に ついては、 $v_{\Lambda} = 3/2 + 2/3 = 2.17$ の値を用いることとしている。以下に、 建築学会で使用している設計用許容応力度を示す。

λ>Λに対し(弾性)

本節では、座屈長さについて説明する。前節で述べたように、座屈応 力は、両端ピン支持、一様断面、一様圧縮、単一断面について規定され ている。しかしながら、使用される部材には、トラス材やラーメンの柱 材など様々な断面形状や境界条件が存在する。このような部材にも、前 述の規定を適用するためには何らかの換算が必要となり、仮想の部材長 さで評価することになる。この部材長さを座屈長さ*l*_kとする。例えば、 両端の支持条件によって異なる座屈長さが図 14-9 に示されている。

例えばl = 500の場合 両端ピン支持 $l_k = l = 500$ 両端固定支持 $l_k = 0.5 l = 250$ を使い計算する。

12.3 座屈長さ

.....(14.24)

また、細長比も次式となる。

 $\lambda = \frac{l_k}{i}$ $\dots (14.25)$

この座屈長さ1,を適切に評価することで、ラーメンの柱など支持条件 が異なっていても、弾性座屈応力や細長比は、式(14.11)及び(14.25)の ように同じ形式で表現することができる。

> 14.4 初期変位と残 留応力

棒材の座屈荷重は初期不整の影響を受けて低下することが知られて いる。特に、短柱では残留応力に、長柱では初期変位に大きく影響され、 座屈荷重を低下させる。荷重の不整とは、図 14-10 のように圧縮材に加 わる荷重が断面の図芯からわずかにずれている場合であり、初期変位と は、材自体がわずかに湾曲している場合などである。しかも、実際の部 材はわずかな不完全さを有しており、そのため初期不整を考慮して座屈 解析を行い、座屈荷重に与える影響を分析し、どの程度耐力が低下して いるかを知っておく必要がある。

図 14-11 は、荷重と材中央部のたわみの関係を表している。図中のA 点が材の最大耐力となり、わずかな初期変位であっても座屈耐力が急激 に低下する。

Р P_{μ} わずかなe <荷重のズレ> <材の湾曲>

図 14-10 荷重の不整と初期変位

図 14-11 初期不整による座屈荷重の低下

溶接による組立材は、冷却とそれに伴う収縮によって自己釣合の残留

応力を残すが、圧延形鋼でも同様の残留応力が断面内に分布する。この 状態で、圧縮荷重が加わると、内在する残留応力に外力の圧縮応力が加 算されて、断面の一部で早めに降伏応力に達し、塑性化することになる。 この状態の断面二次モーメントは弾性域のみで評価されるため、全断面 弾性で計算されたそれに比較して小さい値となる。この結果、座屈荷重 が完全部材に比較して低下する原因となる。特に、図 14-4 の A~B 間、 つまり非弾性領域で影響が大きくなる。

真っ直ぐな材に中心圧縮が加わる場合の耐力は図 14-4 の曲線 ABC で 表されるが、実際の柱材は前節でも述べたように、それぞれ不完全さ(初 期変位など)を有している。設計上中心圧縮として取り扱っても、実際 は圧縮力が中心からずれている場合が多く、また、圧延形鋼や溶接で組 み立てた組立圧縮材には種々の残留応力が存在する。その結果、初期変 位や残留応力の影響で座屈耐力が低下する。実験結果によれば、実際の 柱材の耐力は図 14-12 のように、座屈耐力は分散してしまう。そこで建 築学会新基準により図 14-13 のように弾性範囲の最大耐力を、降伏点を 表す基準値(F値)の 60%とし、限界細長比との交点から曲線 AB を描 いたものを非弾性範囲の耐力と考え、これから許容座屈応力 f_c を決め ている。これらについての詳細は専門書を参照されたい。

曲緱

図 14-12 実験による座屈耐力

14.5 許容座屈 応力 価する。

図 14-14 解析モデルと部材断面

オイラー座屈荷重の理論解は、次式で与えられる。

 $P_{cr} = \frac{\pi^2 EI}{l^2} = \frac{\pi^2 \cdot 20500 \cdot 5814.2}{400^2} = 7351.9kN \qquad \dots \dots (14.26)$

まず SPACE を起動し、SPACE のメニュー「ファイル」→「新規作成」 を選択し、「第 14 章」-「例題 1」フォルダ内にコントロールファイル

を作成する。なお、4 分割モデルは、「例 題 1-1」に、また、8 分割モデルは、「例 題 1-2」に作成する。

このファイルを作成した後、「I/0 デ ータ」→「ファイルの入出力チェック」 →「形状ファイル」から、図 14-15 に 示すダイアログを表示させ、使用する ファイルにチェックマークと、タイト ルを設定する。ファイル名は規定値の まま使用する。ここで必要なファイル は、「構造データファイル」と「荷重フ ァイル」である。

次に、同じく「I/0 データ」→「静的 解析コントロールファイル」を表示さ せ、図 14-16 のように全てのファイル にチェックマークを設定する。

形状データのファイルチェヮク 🛛 🗙									
OK 9イトル 第10章	課題1		キャンセル						
┌形状データファイル									
読み込み可能にする	77/11名	書き込み可能にする	日付						
☑ 構造データファイル	struct.dat	☑							
□ 質量データファイル	mass.dat								
📃 初期変位ファイル	inidis.dat								
🗌 初期応力データ	inistr.dat								
□ 特殊断面	fiberm.dat								
R-O履歴特性	romodl.dat								
一静的解析に用いる荷重									
☑荷重ファイル No.1 (S1)	sload1.dat								
□ 荷重ファイル No.2 (S2)	sload2.dat								
-動的解析に用いる荷重									
□荷重ファイル No.1 (D1)	dload1.dat								
□ 荷重ファイル No.2 (D2)	dload2.dat								
□荷重ファイル No.3 (D3)	dload3.dat								
静的縮合モデル設定ファイル	V								
■ 静的縮合モデル設定	Scom_M.dat								

幕的解析コントロールファイル				X	
OK すべてに 3 一静的解析コントロールファイル	エック		++>751		
読み込み可能にする	7ァイル名	書き込み可能	制にする 日付		
▶ 静的解析コントロールファイル	scontl.dat		20060816 /17:21:42		
▶ 座屈コントロールファイル	seigen.dat		20060816 /17:21:48		
☑ 出力コントロールファイル	soutcl.dat		20060816 /17:21:56	ור	図 4− 0 静的解析コン
					トロールファイル

同様に、「I/0データ」→「ファイル の入出力チェック」→「静的解析の結 果ファイル」、及び「プレゼンテーショ ンコントロールファイル」を表示させ、 図 11-17 と 11-18 のようにチェックを 入れる。

静的解析の結果ファイル			
OK すべてにチェック			キャンセル
■ 静的解析の結果データ まねいみ いっており ニオス	75/1-2	またいみ可能にする	口供
	nofo o dat		
	mone_studet		
	unor_s.dat		
	disp_s.dat		
■部材断面ひずみ	strn_s.dat		
▶ 部材材端応力	stsp_s.dat		
☑断面応力	stbm_s.dat		
☑座屈モード	mode_s.dat		
Strain-energy obteined by buckling mo	engy_s.dat		
□ 各階せん断力	shar_s.dat		
Results of linear stress analysis	linr_s.dat		
☑荷重−変位データ	pd_s.dat		
Node data of Plastic hinges	sry_s.dat		
Maximum node displacements	maxd_s.dat		
Axial stress at maximum load	axis_s.dat		
Bending moment at maximum load	moment.dat		

プレゼンテーション用コントロールファイル			×	
	0		キャンセル	
- プレを'ンテーション用コントロールデータ 読み込み可能にする	ファイル名	書き込み可能にする	日付	図 14-18 プレゼン
☑ ハ⁰ースペウディブコントロールファイル	perscl.dat			テーションコント
☑ インフォメーション用データファイル	info.dat			ロールファイル

次に、「I/0 データ」→「静的解析用データ」→ 「座屈解析コントロールデータ」を表示させ、求 める固有値の数、及び解析用パラメータを設定す る。ここでは、固有値の数は2とし、他のパラメ ータは規定値をそのまま使用する。SPACEでは、大 規模な構造物の固有値解析を効率良く実行するた めサブスペース法を用いている。サブスペース法 では求めるモードの数が、全自由度の数から制限

図 14-17 静的解析の結

果ファイル

ルデータ

されていることを知っておく必要がある。 制限値の詳細については、ユーザーマニュ アルを参照されたい。

静的座屈解析の解析結果は、SEOUTPUT に出力されるため、必ずしも、「プレゼン テーションコントロールファイル」を作成 する必要はない。しかし、「パースペクテ ィブコントロールファイル」を作成しない と、モデラーの透視図やプレゼンターにお ける座屈モードが表示されないことに注 意されたい。

パースペ゚゚゚ ゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	-9		×
OK			キャンセル
─3D表示用コントロールデーター			
画面の位置		視点	スケール
X方向 0	X方向	0	0.45
Y方向 0	Y方向	-1000	— — —
Z方向 0	Z方向	0	
- 各パラメータにおける初期値	の係数		
加速度	速度	変位	£->*
0.1	1	10	100
サークル記号	矢印	曲げモーメント	せん断力
10	1	1	1
断面の応力	断面の歪		
10	1000		
- 図形の原点移動			
X方向	Y方向		Z方向
○移動しない	〇移動	しない	○移動しない
⊙ 中央	⊙ 中央		⊙中央

図 14-20 パースペクティブコン

静的解析用12月1日表示"一刻	■ トロールデータ
OK 反復最大回数 10 収束瞬値 1e-008 キャンセル	
初期変位 読み込み可能にする 7rfル名 ④ 調整なし	次に「静的解
□ f/JHR文1位771ルを使用する □ midis.dat □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	析用コントロー
第2境界条件 (11) 11 11 11 11 11 11 11 11 11 11 11 11	ルデータ」のダ
読み込み可能にする ファル名 第2境界条件を使用する romodidat	
0 境界条件を変更するスティア数 02/九元時代(X=2-1回); 0 2/九元時代(Y-7里面):	イアログでは、2
解析手法の選択	次元解析を選択
●荷重増分+変位増分法 ○荷重増分+弧長法 弧長法の何重人ケールファクター 1	
~ 荷重增分段階	する。
ステップ数 何重係数 ステップ数 何重係数 ステップ数 何重係数	
2: 0 S1 0 S2 0 6: 0 S1 0 S2 0 10: 0 S1 0 S2 0	
3: 0 S1 0 S2 0 7: 0 S1 0 S2 0 11: 0 S1 0 S2 0	
4: 0 S1 0 S2 0 8: 0 S1 0 S2 0 12: 0 S1 0 S2 0	
変位増分あるいは弧長法段階 75-07時 筋占乗号 白中度乗号 変位増分係数 75-07時 筋占乗号 白中度乗号 変位増分係数	
(ダミー) (ダミー) 御長 (ダミー) 御長	
	近の出力・解析創御に関するコントロールデータ 🛛 🛛 🕅
2 0 0 0 7 0 0 0	
3 0 0 0 0 8 0 0 0 0	
4: 0 0 0 9: 0 0 0	新時間における出力間隔
5° 0 0 0 10° 0 0 0	1 steps 考虑解除 部材番号 部材番号
	Fをうち切る為の最大変位 「たうち切る為の最大変位
図 14-21 静的解析用コントロールデータ	500 cm 3 引張強度考慮解除
	ん断変形を考慮しない
	骨・鉄筋の剛性第22200-2010 ● 軟化増分剛性制御 3:00 8:00
「静的解析の出力に関するコントロールデ	第回のパウシンガー効果を考 □ 増分変位制御 4: 0 9: 0
	する 最大倍率 1.05 日 10 10 10 10 10 10 10 10 10 10 10 10 10
ータ」ダイアログを図 14-22 のように作成す 🛛 📬	
	「『里」 「冬山」 SOUTPUT に応力出力

る。ここでは、丸で示したように、せん断変 形を考慮しない」にチェックを入れ、残りの パラメータは何もせず、規定値のままで良い。

> 図 14-22 静的解析の出力・解析制御 に関するコントロールデータ

解析時間における出力間隔	-コンクリート解析条件	断面応力の出力
1 steps 解析をうち切る為の最大変位	 ■考慮解除 ■壁せん断剛性軟化 ■考慮解除 ■引張強度考慮解除 	部材番号 部材番号 1: 0 6: 0
● せん断変形を考慮しない	□ コンクリート圧縮軟化 □ 考慮解除	2: 0 7: 0
鉄骨・鉄筋の剛性第2公配を	軟化增分剛性制御	3: 0 8: 0
 □ 鉄筋のバウシンガー効果を考 □ 慮する 	 增分変位制御 最大倍率 1.05 	4: 0 9: 0
		5: 0 10: 0
荷 <u>重</u> 節点番号 10	<u>変位</u> 10	SOUTPUT IC応力出力 〇出力なし 〇出力
X方向 〇		→ コンクリートのファイバー応力
Y方向 O		 出力 各種バネの応力出力
∠方向 ● X軸回りの回転 ●	0	はりせん断耐力の値選択
Y軸回りの回転		せん断耐力最小値 🛛 🖌 🗸
		RC構造で、ここをチェックすると膨 大な情報量がファイルに出力され るので注意されたい。

X

キャンセル

内容変更

これらの準備が完了すると、モデラーを用いて、 「構造データファイル」および「荷重データ」の 作成を行う。

まず、モデラーを起動させ、図 14-23 のように 構造ファイルのタイトル設定を行った後、構造物 の選択を行い(図 14-24)、続いて図 14-25 のよう にスパン数と階数の設定を行う。

図 14-24 解析構造物の選択

次にスパンと階高の設定を行う。ここでは、スパ ンはないが、SPACE の仕様からダミーのスパン(ス パン長も任意長さを設定)を1つ設定する。

通り芯の設定					
	特殊形状	変更	ОК		戻る
X情報 通り名 スパン 1 X1 1000			Z情報 層名	階名 1E	階高
2 X2			2 RFL		(400.0 ₎

図 14-26 スパン長と階高の設定

次に、使用する断面を設定する。図 14-27 のように断面は、 鉄骨で弾性モデルを選択する。

				X	
鉄骨	鉄筋コンクリー	ŀ	鉄骨鉄筋コンクリート	木材	アルミニウム
鉄骨	SS400	~	木種	べいまつ	v v
コンクリート	Fc18	~	等級	特級 💙	
鉄筋(主筋)	SD295A	~	モデル	弾性	~
鉄筋(副筋)	SD295A	~			
鉄筋(せん断補強筋)	SD295A	V			
				次~	< ++>/21

構造物の規模(平面) X ⊙ X-Z平面 ○ Y-Z平面 規模--スパン数 1 階数 1 階 図 14-25 ス (0を入力した場合は梁の解析) パン数と階 次へ キャンセル 数設定 鉄骨の材料断面・設定 X NO. 1 符号 C 01

図 14-23 タイトルの設定

構造ファイルのタイトル

タイトル行数 2

オイラー座屈荷重の計算|

OK

第10章課題1

キャンセル

図 14-27 鉄骨断面 角型鋼管 の設定

OK -

図 14-29 ビ ルドアップ 機能で角型 鋼管を設定 断面が設定されると要素データ登録ダイアログには、次に示す要素が表示される。

図 14-30 要素データ登録ダイアログ

解析精度をチェックするために、部材のせん断変形を無視する解析を 行う。そこで、図 14-30 で「変更・削除・復帰」ボタンを押すと、次に 示す要素データ変更ダイアログが表示され、図中のせん断断面積をゼロ にセットし、「OK」ボタンを押してデータを変更する。これで、解析は、 せん断変形を無視した解析が行われることになる。

Ę	要素デー	タ変更											×
	要素データ 内端データ OK キャンセル												
	要素 番号	現在の 状態	符号	モデル	ヤング係数 (kN/cm2)	せん断 弾性係数 (kN/cm2)	断面積 (cm2)	断面極二次 モーメント (cm4)	y 軸断面 二次モーメント (cm4)	z 軸断面 二次モーメント (cm4)	y軸回り z軸 せん断断面積 せん (cm2) (cm	回り 、断断面積 重量 27 本N)	7°
L	1	有効	C01	1	20500.000	7900.000	58.560	8716.070	5814.230	5814.230	0	0) 🔿 .0	000

図 14-31 「要素データ変更」ダイアログでせん断断面積をゼロに変更する

以上の処理を全て終えると初期設定が完了する。次は、解析モデルの 形状と境界、荷重を、グラフィック画面を用いて次の順でCAD設定する。

解析モデルの形状を割り付ける前に、図14-33のように柱の分割を「2」 に設定する。「例題1_1」、「例題1_2」のフォルダ内のモデルでは、この 分割を「4」と「8」に設定することになる。

向は自由とする。荷重は固有値問題で固有値を求める際、その固 有値が座屈荷重となるように、下方に-1とする。これらを設定し た後、情報が正確となっているか検証するために、節点情報を図 14-34 のように表示し、データをチェックする。

図 14-35 ファイルの出力

info.dat

■ 動的荷重ファイル 2

□動的荷重ファイル_3

▶ 情報ファイル

なお、モデラーの詳しい使用法については、モデラー使用偏を参照されたい。次に、解析モデルを作成した後、ファイルに出力する。出力ファイルは、図 14-35 に示すように「構造ファイル」、「静的荷重ファイル_1」と「情報ファイル」である。

前節までで、解析用のファイルが全て整った。ここで、ソルバーを起 動して、実際に数値解析を行う。

ソルバーの起動は、SPACEのメニューより「ソルバー」→「静的解析」 →「線形座屈解析」をクリックすることによって行われる。あるいは、 SPACE のツールバーの左から 11 番目のツールチップをクリックするこ とでも静的ソルバーは起動する。この操作によって静的ソルバーが起動 すると、図 14-37 の画面が表示される。ここで、まず、左の制御パネル で「線形座屈解析」を選択し、「データセット」ボタンを押す。解析開 始は、計算開始チップを押すことで始まる。

🔗 SPAC	E Ver.3.	50					×
ファイル(E)	1/0データ	モデラー	ソルパー	フルセンター	しホーター一家示	^///7° ·	
🖻 🗎		§ 🌆	in 🖬			iit 🗷 🔣	1

図 14-36 SPACE のツールチップより静的ソルバーの起動

14.7 数値解析を

実行する

静的ソルバー起動 ツールチップを押 す。

14.8 SOUTPUT で結果

線形座屈解析の結果は、SEOUTPUT ファイルに出力される。また、座屈 **を分析する** モードはプレゼンターを用いて観察することもできる。最初に、出力デ ータを検討してみよう。

SEOUTPUT の表示は、図 14-38 に示す SPACE のメニューバーより行う。

図 14-38 線形座屈解析の結果を表示

課題1に関する SEOUTPUT ファイルの内容は、以下のようである。

2 n_boundary_p n_local_coord 0 0 n_rot_axis n_free 6 Parameter_C.n_S_comp_model 0 Parameter_C.nE_New_Element 0 Parameter_C.n_S_comp_model 0 ----- Title of dynamic analysis ------第10章課題1 オイラー座屈荷重の計算 節点数 = 3 要素数 = 1 部材数 = 2 拘束節点数= 2 0 局所座標数= 回転部材数= 0 節点座標 0.000 0.000 0.000 0 1 0.000 0.000 200.000 0 2 3 0.000 0.000 400.000 0 境界条件 1 –1 -1 -1 0 0 0 3 -1 -1 0 0 0 0 要素モデルデータ 1 1 0.2050E+05 0.7900E+04 0.5856E+02 0.8716E+04 0.5814E+04 0.5814E+04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1435E+04 0.1313E+05 0.1313E+05 0 Model_type.n_e_New_fiber 0 モデル別番号 element: 1 1 部材データ
 2
 1
 0
 1
 -10101011
 1
 1
 0.00

 3
 1
 0
 1
 -10101011
 1
 1
 0.00
 1 1 0.00 0.00 0.00 2 2 0.00 0.00 0.00 Model_type.n_m_New_fiber 0 部材データ ii, nm_damp, nm_element, element_typen_model, n_model_type, n_element_type 1 0 1 1 1 1 1 2 0 1 1 1 2 2 Total no. damp : 0 荷重データ 節点荷重数: 1 3 0.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 n_unknown: 6 0 節点における未知番号の出力 0 0 1 0 1 0

2

0

0

0

3

5

0

0

4

6

0

0

2

3

第14章 部材の座屈

		~									
1 (C	0	0	0	1	0 2	0	3	0	4	0
2 2	2	0	3	0	4	0 0	0	5	0	6	0
n_skyline		19			-				· · · · · · · · · · · · · · · · · · · ·	- +>1+ 3	7 +
n_sky_ave		3							部 材 両 场 に	こおける	る木
			٢			Г				,ш,,	J
Analysis s	tart		l	未知数	数の数	J					
Unstable nu	umber:	0									
n_unknown:		6.									
n_skyline:		19									
nroot:	2	•									
nc.	4										
nnu. mathad type	10	1									
Figon c on	. 51100	1 1000004	7/07/51E_	003							
Ligen_s.ep	itoratio	10000047	100	005							
Ligen_s.n_		//1	100								
DEGREES OF 'Jnstable nu	FREEDOM umber:	I EXCITE 0	ED BY UNI	T START	ING ITERAT	TION VECTORS					
DEGREES OF Unstable nu CONVERGEI NO. OF 1 RROR NORMS	FREEDOM umber: NCE REAC TERATION ON THE	I EXCITE O HED FOR IS EIGENVA	ED BY UNI RTOL :0 : LUS 0.24434	T START . 1000E-(2	ING ITERA 02	TION VECTORS					
DEGREES OF Unstable nu CONVERGEN NO. OF 1 RROR NORMS 0.45372	FREEDOM umber: NCE REAC TERATION ON THE 22489971	I EXCITE 0 HED FOF IS EIGENVA 88E-14	ED BY UNI R RTOL :0 : LUS 0. 24434	T START . 1000E-(2 2248132(ING ITERA 02 60E-15	FION VECTORS	五荷重		─────────────────────────────────────	2座屈モ	- F
DEGREES OF Unstable nu CONVERGEI NO. OF 1 RROR NORMS 0.45372	FREEDOM umber: NCE REAC TERATION ON THE 222489971 e 1	I EXCITE 0 CHED FOF IS EIGENVA 88E-14 Pcr. =	ED BY UNI RTOL :0 : LUS 0. 24434 : 7407	T START . 1000E-(2 2248132(. 650958:	ING ITERAT 02 60E-15 30	FION VECTORS 第1次座原	且荷重		第1次	(座屈モ-	- F
DEGREES OF Jnstable nu CONVERGEI NO. OF I RROR NORMS 0.4537 No. of mode Point No.	FREEDON umber: NCE REAC TERATION ON THE 22489971 a 1 u	I EXCITE 0 CHED FOF IS EIGENVA 88E-14 Pcr. =	ED BY UNI RTOL :0 : LUS 0.24434: 7407 V 0.000	T START . 1000E-(2 2248132(. 650958;	1NG 1TERAT 02 60E-15 30	FION VECTORS 第1次座原 Theta_x	且荷重 Theta	y	第1次 Theta_z	Z C C C C C C C C C C C C C C C C C C C	- K
DEGREES OF Jnstable nu CONVERGEI NO. OF 1 RROR NORMS 0.4537; No. of mode Point No. 1 2	FREEDOM umber: VCE REAC TERATION ON THE 22489971 e 1 u 0.00 1.00	I EXCITE 0 HED FOF IS EIGENVA 88E-14 Pcr. =	ED BY UNI RTOL :0 : LUS 0. 24434: 7407 v 0. 000 0. 000	T START . 1000E-(2 2248132(. 650958: 00	ING ITERAT 02 60E-15 30 0. 00000 -0. 00001	FION VECTORS 第1次座原 Theta_x 0.00000 0.00000	五荷重 Theta 0.007	Jy 184	第1次 Theta_z 0.00000	Z座屈モ-	- ř
DEGREES OF Unstable nu CONVERGEN NO. OF 1 RROR NORMS 0.45372 No. of mode Point No. 1 2 3	FREEDOM umber: NCE REAC TERATION ON THE 22489971 e 1 u 0.00 1.00 0.00	1 EXCITE 0 HED FOF IS EIGENV/ 88E-14 Pcr. = 1000 1000	ED BY UNI R RTOL : 0 : LUS 0. 24434: 7407 v 0. 0000 0. 0000 0. 0000 0. 0000	T START . 1000E-(2 2248132(. 650958: 00 00 00	ING ITERAT 02 60E-15 30 0.00000 -0.00001 0.00000	FION VECTORS 第1次座原 Theta_x 0.00000 0.00000 0.00000	五荷重 Theta 0.007 0.000	y 84 000 84	第1次 Theta_z 0.00000 0.00000	Z座屈モ·	- F
DEGREES OF Unstable nu CONVERGEN NO. OF 1 RROR NORMS 0.4537 No. of mode Point No. 1 2 3	FREEDOM umber: VCE REAC TERATION ON THE 22489971 e 1 u 0.00 1.00 0.00	1 EXCITE 0 2000 2000 2000 2000 2000	ED BY UNI RTOL :0 : ALUS 0.24434: 7407 v 0.000 0.000 0.000	T START . 1000E-(2 2248132(. 650958: 00 00 00	ING ITERAT 02 60E-15 30 0. 00000 -0. 00001 0. 00000	FION VECTORS 第 1 次座版 Theta_x 0.00000 0.00000 0.00000	王荷重 Theta 0.007 0.000 -0.007	y 84 900 84	第1次 Theta_z 0.00000 0.00000 0.00000	z z D D D D D D	- ۲
DEGREES OF Jnstable nu CONVERGEI NO. OF I RROR NORMS 0.4537 No. of mode Point No. 1 2 3	FREEDON umber: NCE REAC TERATION ON THE 22489971 e 1 u 0.00 1.00 0.00	1 EXCITE 0 CHED FOF IS EIGENV/ 88E-14 Pcr. = 10000 10000	ED BY UNI RTOL :0 : ALUS 0. 24434. 7407 V 0. 000 0. 000 0. 000 0. 000	T START . 1000E-(2 2248132(. 650958; 00 00 00	ING ITERAT 02 60E-15 30 0.00000 -0.00001 0.00000	FION VECTORS 第1次座原 Theta_x 0.00000 0.00000 6.2次座屈荷重	田荷重 Theta 0.007 0.007 0.007) y 84 000 84	第1次 Theta_z 0.00000 0.00000 第2次座	(座屈モ・ z)))) 四屈モー	- ř
DEGREES OF Unstable nu CONVERGEI NO. OF I RROR NORMS 0.4537; No. of mode Point No. 1 2 3 No. of mode	FREEDOM umber: NCE REAC TERATION 0N THE 22489971 e 1 u 0.00 1.00 0.00 e 2	1 EXCITE 0 CHED FOF IS EIGENV/ 88E-14 Pcr. = 10000 10000 10000 Pcr. =	ED BY UNI R RTOL : 0 : ALUS 0. 24434 7407 V 0. 0000 0. 0000 0. 0000 0. 0000 1. 35757	T START . 1000E-(2 2248132(. 650958: 00 00 00 . 514498'	ING ITERAT 02 60E-15 30 0.00000 -0.00001 0.00000 74	FION VECTORS 第 1 次座原 Theta_x 0.00000 0.00000 第 2 次座屈荷雪	II荷重 Theta 0.007 0.000 −0.007 II	y 84 000 84	第1次 Theta_z 0.00000 0.00000 第2次座	Z座屈モ・ Z D D D M 田モー	- ۴ ۴
DEGREES OF Unstable nu CONVERGEI NO. OF I RROR NORMS 0.4537 No. of mode Point No. 1 2 3 No. of mode Point No.	FREEDOM umber: VCE REAC TERATION ON THE 22489971 e 1 u 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0	1 EXCITE 0 CHED FOF IS EIGENV/ 88E-14 Pcr. = 10000 1000 Pcr. =	ED BY UNI RTOL :0 : ALUS 0.24434 7407 v 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000	T START . 1000E-(2 2248132(. 650958: 00 00 00 . 514498: 00	ING ITERAT 02 60E-15 30 w 0. 00000 -0. 00001 0. 00000 74 w 0. 00000 74 0. 00000	FION VECTORS 第 1 次座原 Theta_x 0.00000 0.00000 0.00000 第 2 次座屈荷重 Theta_x	豆荷重 Theta 0.007 0.000 −0.007 E Theta	y 84 000 84	第1次 Theta_z 0.00000 0.00000 第2次座 Theta_z 0.00000	<u>マ座屈モ・</u> 2 0 0 2 2 2 2 2	- ۲ ۲
DEGREES OF Unstable nu CONVERGEI NO. OF I RROR NORMS 0.45372 No. of mode Point No. 1 2 3 No. of mode Point No. 1 2	FREEDOM umber: VCE REAC TERATION ON THE 22489971 e 1 u 0.00 1.00 0.00 e 2 u 0.00 0.00	M EXCITE 0 CHED FOF IS EIGENV/ 88E-14 Pcr. = 0000 0000 Pcr. =	ED BY UNI RTOL :0 : ALUS 0.24434 7407 V 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000 0.0000	T START . 1000E-(2 2248132(. 650958: 00 00 00 . 514498: 00 00 00	ING ITERAT 02 60E-15 30 w 0. 00000 -0. 00001 0. 00000 74 w 0. 00000 0. 00000 0. 00000	FION VECTORS 第1次座加 Theta_x 0.00000 0.00000 0.00000 第2次座屈荷重 Theta_x 0.00000 0.00000	且荷重 Theta 0.007 0.000 −0.007 € Theta −1.000	y 84 000 84	第1次 Theta_z 0.00000 0.00000 第2次座 Theta_z 0.00000	Z座屈モ・ Z D D D D Z Z D D D D D D D D D D D D	۲ – ۲

次に、SPACEによる固有値問題を解いた結果であるSEOUTPUTの出力と、 理論的に算出した結果の比較を行う。ここで再び式(14.26)で計算した オイラー座屈荷重を示す。

オイラー荷重 P_{cr}=7351.9kN ·····(14.27)

「例題1」フォルダ(柱分割2)、「例題1_1」(同じく4)、「例題 1_2」(同じく8)の各モデルで求めた座屈荷重を以下に示す。

No. of mode	1	Pcr. =	7407. 6kN	誤差(0.75%)	分割2
No. of mode	1	Pcr. =	7356. 1kN	(0. 057%)	分割4
No. of mode	1	Pcr. =	7352. 6kN	(0. 01%)	分割8

計算結果から分かるように、分割数が増えるに従って、座屈荷重は高 いほうから理論解に近づいており、4分割で十分精度良い結果が得られ ている。分割数が少ないと誤差が生じるという理由は、理論的な座屈モ ードが、SIN波形であるが、一方、SPACEで用いている有限要素法の法線 方向変形場は、3次関数を用いているからである。ただし分割数が増え るに従ってSIN波形に近似するため、得られる座屈荷重が理論解に近づ くことになる。また、高い値から座屈荷重に近づく理由は、有限要素法 は変位法の一種であり、変位法は、変形場の自由度が拘束されると、つ まり、自由度が少ないと得られる剛性は高く評価されることになり、そ の結果、固有値が高く評価されることになるからである。

座屈モードは、プレゼンターを利用することで、観察することができ る。静的プレゼンターを起動した後、子ウインドウ上で、マウス右ボタ ンでプルダウンメニューを表示させ、図14-39のように「線形座屈モー ド」選択する。この操作で図14-40のダイアログが表示され、そこで表 示させたいモード番号を入力する。

骨組の座屈モードが図14-41のように表示される。ここでは、課題3 の第1次、2次、3次座屈モードが示されている。

SPACE - Presentation for St	tatic Analysis of Space Frame Structures -	Linear Buckling Mode Window
)7911/ mm ///-949 & x XH/ D 🞒 💽 🗖 💽 💽 🚺 🗲		
Linear Buckling Mo 🔳 🗖	🞇 Linear Buckling Mode Window 📃	👹 Linear Buckling Mode Window
	1	γ
		\backslash
		/
)
1	λ.	/
Linear Buckling Mode Number: 3	× = 21	y = 1

座屈モードはアニメーション機能により、座屈形状を変化させながら 描かれるため、その挙動がより理解し易くなっている。ただし、この機 能を利用するためには、図14-21の「静的解析用コントロールデータ」 ダイアログの中で、解析ステップ数に値がセットされていることが必要 である。

14.9 まとめ

本章では、オイラー座屈を示す柱を用いて、固有値問題を学習した。 理論的に求めた座屈荷重と SPACE による結果の比較より、解の精度と柱 の分割数との関係を求めた。

線形座屈解析は、オイラー座屈のような座屈前に座屈モードの変位が 生じない、いわゆる分岐問題に対し適切な解を与えること、また、座屈 前で非線形挙動が生じていない構造に対して有効であることを示した。 座屈前で非線形挙動を生じる場合は、非線形解析による方法を用いるこ とになる。

14.10 問題

問 14-1 次の柱材、及び骨組について、SPACE を利用して座屈解析を実行し、座屈荷重と座屈モードを求めよ。

使用する断面は、H-200x100x5.5x8 で、鋼材はSS400 とする。問14.1 と14.2 は弱軸で、問14.3 と14.4 は強軸を使用して数値解析を行う。 解析モデルとして、梁、柱

問 14-3

問 14-4