

第13章 複雑な梁のたわみ

ポイント:梁の微分方程式を用いて、少し複雑な不静定梁を解く 梁の微分方程式の応用

前章では、梁の微分方程式を用いて、梁の断面力とたわみを求めた。 本章では、今までに学んだ知識を利用して、少し複雑な梁を解析してみ よう。微分方程式を用いる方法は、梁や単純な骨組の原理を本質的に理 解するのには非常に重要である。ただし、複雑な構造物の解析を行うに は、たわみ角法やマトリックス法を利用することになる。

図13-1に、片持ち梁の中央に支持点がある不静定構造物を示す。この 構造物の曲げモーメントとせん断力を求め、さらに、変形を求めること にする。

13.2 複雑な梁の解析

13.1 はじめに

13.2.1 片持ちで中央 に支持点のある梁

まず、b~c間の梁について考える。この部分は片持ち梁となっているので、断面力は図13-2に示す片持ち梁と同じとなる。図中のb点を原点とする座標系を用いると、曲げモーメントを表す関数は、

また、反力*M*,は、力の釣合より

$$M_{h} = PL$$

·····(13.2)

となる。従って、梁の微分方程式は

で与えられる。ここで、関数 $w_2(x)$ はb~c間の梁の変位を 表す。上式を2回積分すると、次式が得られる。

境界条件は、b点がピン支持であることから、

図 13-2 片持ち梁の断面力図

ただし、式(13.7)の回転角 θ_b は、a~b間の梁の影響を受けるので、ここでは、値を決定できない。上記の境界条件を式(13.4)と(13.5)に適用すると、

式(13.9)を整理すると、積分定数CLは、

$$C_1 = EI_z \theta_b \qquad \cdots \cdots \cdots (13.10)$$

となる。式(13.8)と式(13.10)を式(13.5)に代入すると、次のように変 位が得られる。

次に、a~b間の梁について考えよう。この梁のa 点を原点とする座標 系を導入する。荷重として、図13-3 に示すように、b~c梁の反力 *M_b*が *b*点に加わることになる。ただし、梁の中間部に荷重がないことと、不 静的梁であることから、梁の微分方程式は、

の釣合

図 13-3 片持ち梁の座標系と節点での釣合

となる。ここで、w_i(x)はa~b間の変位を表す。上式を4回積分すると、

として一般解が得られる。境界条件は、a 点が固定であることから、

また、b 点における境界条件は、ピン支持であることから

となるここで、式(13.18)の回転角 θ_b は、図13-3(b)に示すように、b~ c間の梁のb点の回転角 θ_b と同じであり、現時点では未定である。そこ で、他の境界条件として、b点におけるモーメントの釣合を考える。図 13-3(c)に示すように、b点でのモーメントの釣合は、

$$M(L) + M_b = 0; \quad M(L) = -M_b$$
(13.19)

上記の境界条件を式(13.13)に用いると、

として、積分定数を決定するための条件式が得られる。式(13.12)と式 (13.20)を用いて、積分定数 C_3, C_4 が次のように得られる。

$$C_3 = \frac{3P}{2}$$
 $C_4 = -\frac{PL}{2}$ (13.21)

決定した積分定数を用いると変位 w₁(x)は、式(13.14)より

また、回転角 $\theta_1(x)$ は、

となり、b 点の回転角 θ_b は、

として得られる。

次に、曲げモーメントは、式(13.13)と式(13.21)より

また、せん断力は、

$$Q(x) = \frac{dM}{dx} = -\frac{3}{2}P$$
(13.26)

となる。これで、2つの部材の曲げモーメントとせん断力が全て決定した。これらを図13-4に示す。

図 13-4 片持ちで中央に支持点のある梁の曲げモーメント図とせん断力図

反力も節点での力の釣合より図13-5のように 得られる。求めた反力が正しいか否かを判断す るため、荷重と反力の釣合を考えてみよう。上 下方向の力の釣合は、図13-5に示すように容易 に成立することが分かる。また、モーメントの 釣合は、a点を中心とするモーメント*M*_aを計算 すると、

 $M_a = \frac{PL}{2} - \frac{5}{2}P \cdot L + P \cdot 2L \quad \rightarrow \quad 0$

図 13-5 反力と荷重の釣合

.....(13.27)

となり、成立する事が分かる。

先端cの変位 δ は、回転角 θ_b が式(13.24)として求められているので、式(13.11)から、

となる。変位は、式(13.24)と式(13.11)を用いると、次のように得られる。

同じく、回転角の関数と先端の回転角は次式となる。

13 **-**6

組の解析

13.2.2 ひじ型の骨

図13-7に示す骨組の断面力と変形を求めてみよう。骨組は静定構造物 であることから、最初に力の釣合から断面力を求めることになる。静定 構造物の応力解析は、最初に反力を求めることから始める。反力を図 13-7のように仮定し、荷重との釣合よりその値を求める。

図 13-7 ひじ型の骨組

.....(13.33)

$$R_a + R_c = 0$$

$$H_a = P$$

$$\left. \left. \right\} \dots \dots \dots (13.31)$$

また、a点でのモーメントの釣合は、

$$Ph - R_c L = 0 \qquad \qquad \cdots \cdots \cdots (13.32)$$

となり、反力 R_c は、

$$R_c = \frac{h}{L}P$$

として得られる。次に、 R_a は式(13.31)の上より、

図13-8 を参考にすると、a~b 間におけるx点でのモー メントの釣合は、

 $-M(x) + H_a x = 0$ (13.35)

図 13-8 柱部分のモーメントの釣合

.....(13.36)

ただし、柱に生じる曲げモーメントは図に示す偶力を正とする。計算の 結果、その値が正となる場合は仮定が正しく、また曲げモーメント図は、 柱の右側を引張としたことから右側に描くことになる。逆にその値が負 の場合、柱の左側に描く。上式より、x点での曲げモーメントは、

$$M(x) = Px$$

となり、曲げモーメント図は、右側に描くことになる(図 13-8)。

次に、b~c間の梁において、図13-9(a)のように座標 系をおき、b 点より x の位置でのモーメントの釣合は以 下のようになる。

$$-M(x) + H_a h + R_a x = 0 \qquad \dots \dots \dots (13.37)$$

上式を整理すると、b~c間の梁の曲げモーメントを表す 関数は、

となる。

部材の断面力と反力との力の釣合、及び、節点での力 の釣合を考えることによって、曲げモーメント、せん断 力、軸力を求め、図13-9(b)にそれらを示す。

次に、骨組の変形を求めてみよう。梁の微分方程式は、 曲げモーメント分布が分かっていることから、a~b間の 柱とb~c間の梁に対して、各々、

$$EI_{z1} \frac{d^2 w_1}{dx^2} = -Px \qquad (a \sim b \text{ [I]}) \qquad \dots \dots \dots (13.39)$$
$$EI_{z2} \frac{d^2 w_2}{dx^2} = \frac{Ph}{L} x - Ph \qquad (b \sim c \text{ [I]}) \qquad \dots \dots \dots (13.40)$$

となる。ただし、部材の曲げ剛性は、柱では EI_{z1} で、梁では EI_{z2} とする。 また、座標系は図13-8と図13-9(a)に示されており、各々の変位として、 柱 w_1 は、梁は w_2 とする。上式を2回積分すると変位が次のように得られ る。

最初に、b~c間の梁について考える。境界条件としては、a~b間の柱が 伸縮しないとすると、b点は上下に変位しないこと、また、c点は、ロ ーラー支持であるため上下に変位をしないことより、次の境界条件が得

 $-\frac{h}{L}P$

M(x)

H

R.

曲げモーメント図

Ph

(a)

られる。

上式より、積分定数C,は、

となる。得られた積分定数より、式(13.42)の変位 w₂(x) は、

また、回転角 $\theta_2(x)$ は上式を微分することによって、

$$\theta_2(x) = \frac{dw_2}{dx} = \frac{PhL}{6EI_{z2}} \left\{ 3(\frac{x}{L})^2 - 6(\frac{x}{L}) + 2 \right\}$$
(13.47)

ここで、b点における梁の回転角 θ_b は、

$$\theta_2(0) = \theta_b = \frac{PhL}{3EI_{z2}} \tag{13.48}$$

となる。

次に、a~b間の柱について解析を行う。境界条件としては、a点はピン支持であることより

 $EI_{z_1}w_1(0) = C_2 = 0$ (13.49)

となるが、**b**点では水平変位が生じる。この水平方向変位δは、式 (13.41)より

$$\delta = w_1(h) = \frac{h}{EI_{z1}} \left(-\frac{Ph^2}{6} + C_1 \right)$$
(13.50)

として与えられる。他の境界条件として、b点での 回転角 θ_b を用いる。図13-10 に示すように、b点 で梁と柱は90 度の角度で剛接しており、変形後も この角度が保たれる。このため、梁の回転角と柱 の回転角は等しい。b点における柱の回転角 θ_b は、

図 13-10 柱と梁の接合部の変形

となり、上式と式(13.48)を等しいと置くと

$$\theta_b = \frac{PhL}{3EI_{z1}} = \frac{1}{EI_{z1}} \left(-\frac{Ph^2}{2} + C_1 \right)$$
(13.52)

となる。上式より積分定数 C_1 は、

得られた積分定数を式(13.41)に代入すると、変位 w₁(x) が次のように得られる。

回転角は、上式を微分することによって、

また、b点での水平変位 δ は、式(13.54)より、

として得られる。ここで、柱と梁の曲げ剛性を次のように K_1, K_2 で表し、

とすると、水平変位 δ は次式で与えられる。これで骨 組の変形状態は全て求められた。その骨組の変形を図 13-11 に示す。

13.3 課題

13 -10

本章の課題は、例題で示した2つの少し複雑な梁をSPACEで数値解析し、 例題の解析結果と比較し、それらの値を検証することである。

解析モデルは、図13-12に示す中央支持点を有する片持ち梁と図13-13 に示すひじ型の骨組である。ここで使用する断面は、鉄骨のSS400で、 ヤング係数は *E* = 20500*kN*/*cm*² である。使用断面は、H型断面で H-400x200x8x13とする。

図 13-12 課題 1 の解析モデル

例題の解析結果を利用して、曲げモーメント図、せん断力図、軸力図を 以下のように求めておこう。

図 13-14a 曲げモーメント図

H型断面の断面性能: $A = 20 \cdot 40 - (20 - 0.8)(40 - 2 \cdot 1.3) = 81.9 cm^2$ $I = \frac{20 \cdot 40^3 - (20 - 0.8)(40 - 2 \cdot 1.3)^3}{12} = 22964.9 cm^4$ $Z = \frac{22964.9}{20} = 1148.2 cm^3$ $E = 20500 kN / cm^2$ 両課題の断面内に生じる最大応力は、以下のように与えられる。 課題1:梁中央の支持点(断面の上側:引張応力、下側:圧縮応力) $\sigma_{\rm max} = \frac{M}{Z} = \frac{4000}{1148.2} = 3.48 kN/cm^2$ $\dots (13.59)$ 課題2:梁では、柱との接合部近辺で、圧縮側、引張側共に $\sigma_{\rm max} = \frac{M}{Z} = \frac{4000}{1148.2} = 3.48 kN/cm^2$ 柱では、柱頭で(上が断面内側に発生する引張応力、下が断面 外側に生じる圧縮応力) $\sigma_{t,\max} = \frac{N}{A} + \frac{M}{Z} = \frac{10}{81.9} + \frac{4000}{1148.2} = 3.60 kN / cm^2$ $\sigma_{c,\max} = \frac{N}{A} - \frac{M}{Z} = \frac{10}{81.9} - \frac{4000}{1148.2} = -3.36 kN / cm^2$ 課題1の最大たわみは、片持ち梁先端に生じる。 課題2の水平変位 δ は、式(13.58)より、 $K_1 = K_2 = \frac{2 \cdot 20500 \cdot 22964.9}{400} = 2353902$ $\delta = \frac{2Ph^2}{3}\left(\frac{1}{K_1} + \frac{1}{K_2}\right) = \frac{2 \cdot 2 \cdot 10 \cdot 400^2}{3 \cdot 2353902} = 0.906cm$ ·····(13.61)

> 13.4 モデラーで 解析モデルを作成 する

SPACE のモデラーを用いて、上記の2課題の解析モデルをコンピュー タ内に作成する。この2つの課題に対する解析モデルを、「演習解析モ デル」-「第13章」フォルダ内の「課題1」、課題2」フォルダ中に各々 作成する。

モデラーを起動し、初期データ設定ウイザードによって、まず、骨組

図 13-15 使用材料と部材モデルの選択

用するため、 材料はSS400とし、また、両端ファイバーモデルとする。

解析に使用する断面は、H型断面でH-400x200x8x13とする。解析モデ ルの作成方は、第3章を参照し、練習として自ら作成されたい。

SPACE で学ぶ構造力学 入門編

図 13-17 課題1の 解析モデル 図 13-18 には、断面の特性が表示されており、解析的に求めた値と一 致している。

ų	「素デー	タ変更											
	要素デ	ータ材端	データ				断面変〕	E			ОК		+
	要素 番号	現在の 状態	符号	モデル	ヤング係数 &N/cm2)	せん断 弾性係数 &N/cm2)	断面積 (cm2)	断面極二次 モーメント (cm4)	y 軸断面 二次モーメント (cm4)	z 軸断面 二次モーメント (cm4)	y 軸回 り せん断断面積 (cm2)	z 軸回 り せん断断面積 (cm2)	
	1	有効	G1	11	20500.0000	7900.0000	81.92000	35.67627	22964.86914	1734.92908	81.92000	81.92000	

図 13-18 課題1 で用いる断面の特性

解析モデルが完成した後、図 13-19 に示すダイアロ グでデータを各ファイルに出力する。

モデラーを閉じた後、静的ソルバーを用いて、線形 解析を実施する。その際、図 13-20 で示すダイアログ で、せん断変形を考慮しないようにチェックマークを 入れる。

解析結果を検証するために、メニューの「表示」→ 「静的解析の途中経過の表示」を選択すると、図 13-21 のように、解析経過が表示される。図 13-20 の丸で示 した「SOUTPUT」に応力出力の項で、「出力」にチェッ クを入れることで、断面力が出力される。このファイ ルの最後に、10 ステップ目の断面力が表示されており、

解析時間における中力問	コンクリート解析条件	断面応力の出力
1 steps	™ □ 柱せん断剛性軟化 考慮解除	部材番ちりセット
	立 壁せん断剛性軟化 立 考慮解除	
500 cm		
せん断変形を考慮しない	- コンクリート圧縮軟化 考慮解除	2: 0 7: 0
鉄骨・鉄筋の両性第2勾配	を	3: 0 8: 0
□鉄筋のバウシンガー効果?		4: 0 9: 0
一度する 声音 支付井線のつける すう		5: 0 10: 0
可 <u>車</u> ー変1回曲線のコントロールテー イ	ッ 「重 変位	
節点番号 10	10	SOUTPHT 1-15-54-97
X方向		コンクリートのファイバー応力
Y方向		□出刀
Z方向		
X車回りの回転		はりせんと加附ノルク胞選択
Yemeりの回転		ビルの前月月取小道 🎽
2単田ロトリリン1回車X		RC構造で、ここをチェックすると膨 大な情報量がファイルに出力され ろので注意されたい。
+ <i>*</i>		
±恵 ファイバーの歪は結果ファイ!	レの「ファイバー・バネのひょずみ」	と変位」の項目をチェックすること
で出力される。また、ひずみに	「応力と同じ条件で出力される。	

図 13-19 解析モデ

ルのファイルへの

出力

図が得られてい	る。
---------	----

ivided step	number:	10					
nstable numb	er: U			-			
的雷方部树	モテル	N×	uy 	UZ	M×	My	MZ
1	11	0.0000	0.0000	15.0000	0.0000	-1999.9811	0.000
		0.0000	0.0000	15.0000	0.0000	-499.9858	0.000
2	11	0.0000	0.0000	15.0000	0.0000	-499.9858	0.000
		0.0000	0.0000	15.0000	0.0000	1000.0095	0.000
3	11	0.0000	0.0000	15.0000	0.0000	1000.0095	0.000
		0.0000	0.0000	15.0000	0.0000	2500.0047	0.000
4	11	0.0000	0.0000	15.0000	0.0000	2500.0047	0.000
		0.0000	0.0000	15.0000	0.0000	4000.0000	0.000
5	11	0.0000	0.0000	-10.0000	0.0000	4000.0000	0.000
		0.0000	0.0000	-10.0000	0.0000	3000.0000	0.000
6	11	0.0000	0.0000	-10.0000	0.0000	3000.0000	0.000
		0.0000	0.0000	-10.0000	0.0000	2000.0000	0.000
7	11	0.0000	0.0000	-10.0000	0.0000	2000.0000	0.000
		0.0000	0.0000	-10.0000	0.0000	1000.0000	0.000
8	11	0.0000	0.0000	-10.0000	0.0000	1000.0000	0.000
		0.0000	0.0000	-10.0000	0.0000	0.0000	0.000
ep number :	10 ////	Load S1	1.000 Load S	2 0.000	Max. disp.(No	. node: 9):	0.7931

図 13-21 Soutput ファイルの内容表示(断面力の表示)

梁先端の変位は、

 $\delta = 0.793 cm$ として得られており、解析結果である式(13.60)と同じ値と なっている。

0.0000 0.0000

No.2:Mz

次に、課題2の解析モデルを作成 しよう。このモデルは練習問題と X情報 通り名 して読者自ら作成されたい。ここ 1 X1 2 X2 では、作成過程で大切な部分のみ、 , 24 NE INA MI 10/ ΠÛ 全荷重 S No.1:Py No.1:P2 No.1:Mx No.1:My No.1:M2 No.2:Py No.2:Py No.2:Pz No.2:My 0.000

		III. 🔕						âm.		X2			解	析モ	デル		
を定更してく	550										NUM						
素子、	- 友変更																
																	Ľ
要素	"ータ 材端	データ				断面変)	E			ОК		キャンセル]				Ľ
要素于要素	^タ 材端 現在の 状態	データ	モデル	ヤング係数 (kN/cm2)	せん断 弾性係数 (kN/cm2)	断面変〕 断面積 (cm2)	更 断面極二次 モーメント (cm4)	y動新面 二次モーバット (cm4)	z 軸町面 二次モーメント (cm4)	OK y軸回り せん断断面積 (cm2)	2軸回り せん断断面積 (cm2)	キャンセル 第1ステッフ [®] 重量 (kN)) 第2ステッフ [。] 重量 KN)	軸方向耐 力 (kN)	y軸塑性 モーズント &k.N.com)	z軸塑性 モーバント (kN-cm)	Ľ
要素 要素 番号 1	²¹ ータ 材端 現在の 状態 有効	データ 符号 G1	モデル 11	ヤング係数 (kN/cm2) 20500.0000	せん断 弾性係数 (kN/cm2) 7900.0000	断面変〕 断面積 (cm2) 81.92000	更 断面極二次 モーメント (cm4) 35.67627	y軸断面 二次モーパント (cm4) 22964.86914	z 車邮所面 二次モーメント (cm4) 1734.92908	OK y軸回り せん断断面積 (cm2) 81.92000	z軸回り せん断断面積 (cm2) 81.92000	キャンセル 第1ステッフ [。] 重量 (kN) 0.00000	第2ステッフ [。] 重量 (KN) 0.00000	軸方向耐 力 &N) 2007.0399	y軸望性 モーメント (k.N・cm) 9 31505.824	z軸望性 モーバント (k.N*cm) 6516.6079	Ľ

図13-25課題2の

Ì	^新 点情報										X
	座標 局	所座標系	境界条件·岡	川床 静 的荷	苛重1 】静的	荷重2 動的	」荷重1 動	的荷重2 動	的荷重3 質量		ОК
	節点番号	変位u(x)	変位v(y)	変位w(2)	回転θ×	回転θy	回転θz	剛床番号			
	1	-1	-1	-1	0	0	0	0		n n	
	2	0	0	0	0	0	0	0			キャンセル
	3	0	0	0	0	0	0	0		C	
	4	0	0	0	0	0	0	0			
	5	0	-1	-1	0	0	0	0			

図 13-28 解析モデルの境界条件

Ē	点情報									
	座標 局	所座標系	境界条件·剛	床 靜的荷	f重1 靜的	荷重2 動的	的荷重1 動	的荷重2 動的荷重3	質量	ок
	節点番号	Px	Py	Pz	Mx	My	Mz			
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
	2	10.0000	0.0000	0.0000	0.0000	0.0000	0.0000			キャンセル
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
	4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			

図 13-29 節点情報を用いて節点荷重をチェック

課題1と同様に、解析モデルが完成した後、線形解析を実施する。 その際、図13-20で示すダイアログで、せん断変形を考慮しないように チェックマークを入れる。

解析結果を検証するために、メニューの「表示」→「静的解析の途中 経過の表示」を選択すると、図 13-30 のように、解析経過が表示される。 断面力は、図 13-20 の丸で示した「SOUTPUT」に応力出力の項で、「出力」 にチェックを入れることで出力される。このファイルの最後に、10 ステ ップ目の断面力が表示されており、図 13-15 の断面力と一致している。 ただし、断面曲げモーメントが解析解に比較して、ほんのわずか小さい がこれは、解析では部材の伸縮は無視しているが、SPACE では考慮して いることによる。

『材番号 部材	1モデル	N×	Qy	Qz	M×	Му	Mz
1	11	10.0000	0.0000	-9.9999	0.0000	0.0000	0.0000
		10.0000	0.0000	-9.9999	0.0000	-3999.9665	0.0000
2	11	0.0000	0.0000	9.9999	0.0000	-3999.9665	0.0000
		0.0000	0.0000	9.9999	0.0000	-2666.6776	0.0000
3	11	0.0000	0.0000	9.9999	0.0000	-2666.6776	0.0000
		0.0000	0.0000	9.9999	0.0000	-1333.2888	0.0000
4	11	0.0000	0.0000	9.9999	0.0000	-1333.2888	0.0000
		0.0000	0.0000	9.9999	0.0000	0.0000	0.0000

図 13-30 Soutput ファイルの内容表示(断面力の表示)

節点情報 。節点番号

当該節点の境界条件

х

現在の変位。

負方向

正方向

x cm

解析結果の最大変位-

cm

0.90879

0

プレゼンターで解析結果を分析する。 図 13-31 には、せん断力図と曲げモー メント図が描かれている。解析結果と 同一の断面力図が得られている。

図 9-31 で、Ctrl キイを押しながら、 梁と柱の接合部付近をマウス右ボタン でクリックする。この操作で、図 9-32 には、梁先端の節点情報が表示されて いる。同図の丸で示しているように、 梁先端の変位は、δ=0.909cmとして得 られており、解析結果である式(13.61) とほぼ同じ値となっている。両者の値 にわずかな差異が見られるが、これも、 断面力と同様に、部材の伸縮を考慮し ているか否かの相違による。

2

y cm z cm

cm

0

0.90879 0 0.0023742

θx

Free Free Free Free Free Free

z cm

0 0.0023742

0

θv

荷重番号

 $\theta \times$

図 13-31 プレゼンターに よる断面力の表示(上: せん断力図、下:曲げモ ーメント図)表示

図 13-32 柱頭の水平 方向変位を節点情報 から読み取る

13.5 まとめ

本章では、今までに学んだ知識を利用して、少し複雑な梁を解析した。 微分方程式を用いる方法は、梁や単純な骨組の原理を本質的に理解する には非常に有用である。ただし、複雑な構造物の解析を行うには、あま りにも複雑となり、解析が困難となる。そこで、手計算ではたわみ角法 や固定法が利用されることになる。

OK

θz

10

θz

θy

また、SPACE を用いて、例題で解析した骨組を数値解析し、その結果 を解析解と比較した。 問 13-1 次に示す静定骨組を、SPACEを用いて応力解析(線形解析)を
 実行しなさい。また、解析的に解を求め、その結果と比較しな
 さい。ここで使用する部材は鉄骨の SS400 で、ヤング係数は
 E = 20500kN/cm² であり、使用断面は H-400x200x8x13 とする。

問 13-1

問 13-2

問 13-3

13.6 問題