

第2章 釣合式の構築

ポイント:節点における変位の適合 節点におけるモーメントの釣合

部材に関するたわみ角法の基本式は前章で求めた。このたわみ角法の 基本式を用いて、骨組の応力解析を行うわけであるが、ここでは骨組全 体の釣合を得る方法について考える。骨組全体の釣合式を得るために、 各節点における変形の適合と力の釣合が必要となる。本章では、節点移 動が無い場合の釣合式を用いて、簡単な骨組の応力解析を行う。

キーワード 節点における回転角の適合 モーメントの釣合 たわみ角法の釣合式

一般的に、節点における変位の自由度は、平面骨組を考えると u_i, w_i, θ_i の3つであるが、たわみ角法における変位は、両端の回転角 θ_i, θ_j と部材角*R*で表される。そのため、これらの θ_i, θ_j, R をそのま ま節点変位として用いるわけにはいかず、特に部材角の扱いに何らかの 工夫が必要となる。

たわみ角法では、骨組を節点移動がある場合とない場合に分類し、解 析方法を分けて考える。本章では節点移動のない場合、つまり部材角が 生じない場合について解説する。部材角に対し特別の扱いを必要とする 節点移動のある場合については後章で検討する。

最初に、図 2-2 に示す骨組を考える。部材①と部材②が節点 2 で結合 し、また荷重を受けて骨組が変形するとき、両部材の角度が変形前と変 形後で変化しないとき、この結合状態を剛接合という。この剛接合では、 変形後、部材①の j 端と部材②の i 端の回転角は同じとなり、そのため、 代表してこの回転角を節点の番号を付けて節点回転角 θ, とする。

他の節点も同様で、剛接している部材の材端回転角を節点回転角とす ることで、骨組全体で節点における回転角の適合が得られる。

図 2-2 節点における 回転角の適合

2.1 はじめに

次に、力の釣合について考えよう。骨組内の各節点では力の釣合が当 然満たされなければならない。節点での力の釣合には、X 方向、Y 方向 の力の釣合、及びモーメントの釣合がある。ここでのモーメントの方向 は、平面骨組ではこの紙面に垂直方向で、全て同じである。従って、モ ーメントや回転角、部材角は、回転方向のみを考慮すれば良いことにな る。すなわち、方向を一致させるための座標変換が必要でない。

例えば、図2-3のように番号1と2の部材が節点に剛接している場合、 節点でのモーメントの釣合は

$$-{}_{1}M_{ii} - {}_{2}M_{ii} + M = 0$$
(2.2)

となる。ここで M は節点に直接加わるモーメント外力である。

2.4 例題

本節では、いくつかの例題で、変形の適合と節点での力の釣合について学び、たわみ角法を応用して簡単な骨組の断面力と変位を求める。

例題2-1 図2-4示すようなはね出し梁の先端に外力Pが加わっている。 この骨組先端の変位を求めよ。ここでは、変形の適合と節点 でのモーメントの釣合を考え、たわみ角法を適用する。

図 2-4 から理解できるように、はね出し部分は片持ち梁 の応力状態で表される。従って、はね出し部分は、もはや 応力解析を行う必要がない。そこで、このはね出し梁の反 力と釣合う外力を加えて、図 2-4 下の左のような構造物の 解析を行うことになる。

以下では、同図の梁についてたわみ角法で解析する。 の部材のたわみ角法の基本式を次のように示す。

$$M_{12} = \frac{2EI}{l}(2\theta_1 + \theta_2 - 3R)$$
$$M_{21} = \frac{2EI}{l}(2\theta_2 + \theta_1 - 3R)$$
$$\left\{\cdots \cdots (2.3)\right\}$$

上式では、部材の中間荷重がないので C_{12} , C_{21} はゼロとしている。こ こで上式に境界条件を適用する。節点1は固定であるため、 $\theta_1 = 0$ で あり、また、節点1、2は共に移動しないため部材角*R*は生じない。従 って、以下の境界条件が得られる。 2.3 節点における 力の釣合

2-2

図 2-3 節点でのモー

メントの釣合

$$\theta_1 = 0 \quad R = 0 \qquad \dots \dots \dots (2.4)$$

上式で与えられる境界条件を式(2.3)に適用すると、材端モーメントは、

$$M_{12} = \frac{2EI}{l}(\theta_2)$$

$$M_{21} = \frac{2EI}{l}(2\theta_2)$$

$$M_1 \qquad M_{12} \qquad M_{21} \qquad Pl$$

$$M_1 \qquad M_{12} \qquad M_{21} \qquad Pl$$

となる。次に、節点 1、2 におけるモーメン トの釣合を考える。図 2-5 を参考にすると、 2 節点でのモーメントの釣合は以下のように得られる。ここで、*M*₁は、 固定端における反力であり、また、節点 2 における荷重 P は、直接支持 点で支えられているため、釣合式には含まれない。

$$M_1 - M_{12} = 0 - M_{21} + Pl = 0$$
 $\left\{ \dots \dots (2.6) \right\}$

上式に、式(2.5)に示す材端モーメントを代入すると、

$$M_{1} = \frac{2EI}{l}\theta_{2}$$

$$\frac{2EI}{l}(2\theta_{2}) = Pl$$

$$\left.\right\} \dots \dots (2.7)$$

となる。式(2.7)の下を用いると、未知数である節点2の回転角 θ_2 は、 次のように得られる。

$$\theta_2 = \frac{Pl^2}{4EI} \qquad \dots \dots (2.8)$$

得られた回転角を、式(2.5)に代入すると材端モー メント M_{12} , M_{21} は

$$M_{12} = \frac{2EI}{l} \cdot \frac{Pl^2}{4EI} = \frac{Pl}{2}$$
$$M_{21} = \frac{2EI}{l} \cdot \frac{2Pl^2}{4EI} = Pl$$

となる。

梁内部に生じる曲げモーメントは、部材内の曲げモーメントと外力・ 反力とのモーメントの釣合から、図2-6のようになることが分かる。こ こで、曲げモーメント図は、断面の引張側に描くことに注意しよう。従 って、骨組全体の曲げモーメント図は、図 2-7 のようになる。 Plまた、先端のたわみは、片持梁先端のたわみw,と節点2の 回転角による剛体変位との和で、次のように表される。 $w_3 = \overline{w}_3 + \theta_2 \cdot l = \frac{Pl^3}{3FI} + \frac{Pl^3}{4FI} = \frac{7Pl^3}{12FI} \qquad \dots \dots (2.10)$ 図 2-7 曲げモーメント図 例題 2-2 図 2-8 示すようなはね出し梁の先端に外力 P が加わっている 場合について、たわみ角法を用いて応力解析しなさい。例題 2-1とは、節点1の境界がピン支持である点が異なる。 この構造物は例題 2-1 と同様にはね出し部分は片持ち梁 の応力状態となるため、図 2-8 の下左の構造物について解 の応力状態となるため、図 2-8 の下左の構造物について解 EI析を行うことになる。この構造物に対するたわみ角法の基 Δ_1 Δ_2 本式は、 $M_{12} = \frac{2EI}{I}(2\theta_1 + \theta_2)$ $\left.\right\} \dots \dots (2.11) \qquad \qquad \begin{array}{c} P \\ \checkmark \\ \Delta 1 \\ 2 \\ \end{array} \right.$ $M_{21} = \frac{2EI}{I}(2\theta_2 + \theta_1)$ となる。ただし、 C_{12} , C_{21} 及びRはゼロとしている。ここ 図 2-8 例題 2-2 の構造 で節点1はピン支持であるため、モーメントの反力が生じ ない。そのため、 $\dots (2.12)$ $M_{12} = 0$ であり、従って、上式に式(2.11)の上を代入すると $\frac{2EI}{l}(2\theta_1+\theta_2)=0$ $\theta_1 = -\frac{\theta_2}{2}$ $\dots (2.13)$ となる。上式を基本式に代入すると、材端モーメントは、

$$M_{12} = 0$$

$$M_{21} = \frac{2EI}{l}(2\theta_2 - \frac{\theta_2}{2})$$

$$= \frac{2EI}{l}(1.5\theta_2)$$

$$\cdots (2.14)$$

となる。

節点2でのモーメントの釣合を考えると

$$-M_{21} + Pl = 0 \qquad \dots \dots (2.15)$$

となり、上式に式(2.14)下を代入すると、釣合式として下式が得られる。

$$Pl = \frac{2EI}{l}(1.5\theta_2) \qquad \dots \dots (2.16)$$

従って、回転角θ,は、

$$\theta_2 = \frac{Pl^2}{3EI} \qquad \dots \dots (2.17)$$

となる。得られた回転角を式(2.14)の材端モーメントに代入すると

$$M_{21} = \frac{2EI}{l} (\frac{3}{2} \cdot \frac{Pl^2}{3EI}) = Pl \qquad \dots \dots (2.18)$$

となる。曲げモーメント分布を図 2-9 に示す。また、先端のたわみは片 持梁先端のたわみ w₃と節点 2 の回転角による剛体変位との和で、次の ように表される。

例題 2-3 図 2-10 に示す両端固定の連続梁について、たわみ角法を用いて応力解析を行い、曲げモーメント図とせん断力図を描け。

この構造物には、部材荷重が加わっている。そこで、最初に、部材② の部材荷重に対する基本応力を求めることにする。基本応力は、両端固 定の状態における固定端モーメントC、単純梁の状態における中央の曲 げモーメントM₀、及び端部のせん断力Qである。

部材②の基本応力

$$C = \frac{Pl}{8}$$

$$M_0 = \frac{Pl}{4}$$

$$Q = \frac{P}{2}$$

$$\dots \dots (2.20)$$

部材①、②に対してたわみ角法の基本式を適用する。 部材①

<u>. . .</u>

$$M_{12} = \frac{2EI}{l}(2\theta_1 + \theta_2)$$
$$M_{21} = \frac{2EI}{l}(2\theta_2 + \theta_1)$$

図 2-10 例題 2-3 の構造物と基本応力

部材2

$$M_{23} = \frac{2EI}{l}(2\theta_{2} + \theta_{3}) - C$$

$$M_{32} = \frac{2EI}{l}(2\theta_{3} + \theta_{2}) + C$$

$$\left.\right\} \dots \dots (2.22)$$

ここで、固定端モーメントの符号は、基本応力のモーメント反力の方向 で決めることになる。

次に、境界条件について考えてみよう。この構造物では、無論、節点 移動がないため、二つの部材の部材角 R はゼロである。さらに、節点 2 では、部材①と②で θ_2 を用いており、変位の適合がとられている。最 後に、境界条件は節点 1 と 3 が固定支持であることより、該当する節点 の回転角は、次のようにゼロとなる。

$$\theta_1 = \theta_3 = 0 \qquad \dots \dots (2.23)$$

上式を、式(2.21)と(2.22)で表される基本式に代入すると、境界条件を 適用した基本式として次式が得られる。

基本式である式(2.24)と(2.25)から分かるように、未知数は、節点2での回転角 θ_2 、ひとつである。そのため、この未知数を決定するための 釣合式はひとつで良い。そこで、節点2でのモーメントの釣合を考える。 節点2におけるモーメントの釣合は、節点に直接加わるモーメント荷重 がないことから、以下の式で与えられる。

$$M_{21} + M_{23} = 0 \qquad \dots \dots (2.26)$$

ただし、部材の中間に加わる部材荷重は既に、式(2.24)で固定端モーメント として評価されている。式(2.24)と式(2.25)を釣合式(2.26)に代入すると

$$\frac{2EI}{l}(2\theta_2) + \frac{2EI}{l}(2\theta_2) - C = 0$$

$$\frac{2EI}{l}(4\theta_2) = C \qquad \dots \dots (2.27)$$

として釣合式が得られる。上式を回転角 θ, について解くと、

$$\theta_2 = \frac{l}{8EI}C \qquad \dots \dots (2.28)$$

未知変位である回転角 θ2 が決定される。

次に、部材の応力を求める。まず、求めた回転角 θ_2 の値を基本式(2.24) と(2.25)に代入すると、各部材の材端モーメントが次のように得られる。

$$M_{12} = \frac{2EI}{l} \cdot \frac{l}{8EI} C = \frac{C}{4}$$

$$M_{21} = \frac{2EI}{l} \cdot \frac{2l}{8EI} C = \frac{C}{2}$$

$$M_{23} = \frac{2EI}{l} \cdot \frac{2l}{8EI} C - C = \frac{C}{2} - C = -\frac{C}{2}$$

$$M_{32} = \frac{2EI}{l} \cdot \frac{l}{8EI} C + C = \frac{5}{4}C$$

$$(2.29)$$

SPACE で学ぶ構造力学入門 骨組編 I

次に、得られた材端モーメントと部材内端部応力のモーメントの釣合から、部材内部の応力状態を求める。最初に、部材①について検討しよう。図 2-11(a)では、材端モーメントと部材内の応力とのモーメントの 釣合から部材端部の曲げモーメントが求められ、結果、図 2-11(b)で示 される曲げモーメント分布が得られる。

図 2-11(a) 部材①の材端モーメント と部材内曲げモーメントの釣合

図 2-11(b) 部材①の曲げモーメント図とせん断力図

部材内の曲げモーメント分布が分かれば、せん断力分布は容易に得られ る。曲げモーメント分布が直線であることから、せん断力分布は定数で あり、部材のせん断力分布は曲げモーメント分布より、

$$Q = -\frac{M_{ji} + M_{ij}}{l} = -\frac{-M(l) + M(0)}{l} = -\frac{\frac{C}{2} + \frac{C}{4}}{l} = -\frac{3C}{4l} = -\frac{3}{32}P.\dots(2.30)$$

として得られる。

次に、中間荷重の加わっている部材2について考える。材端モーメントと部材内応力のモーメントの釣合より、図2-12のようになる。

図 2-12 部材 2 の材端モーメントと部材内曲げ モーメントの釣合および曲げモーメント図 たわみ角法では、応力解析による応力状態と両端固定の応力状態を重 ね合わせる必要がある。しかし、両端固定の材端応力は、式(2.29)の *M*₂₃,*M*₃₂から分かるように、ここでは既に固定端力として考慮されて いる。そのため、図 2-12 の曲げモーメント分布に、図 2-13(a)で示す ように単純梁の応力状態を加えることで、実際の部材内の曲げモーメン ト分布が得られることになる。そこで、部材中央の曲げモーメント*M*_cは、 図 1-13(a)から次式で求められる。

$$M_{c} = M_{0} - (M_{32} - M_{23})/2$$

= $M_{0} - (\frac{5}{4}C + \frac{C}{2})/2$
= $2C - \frac{7}{8}C = \frac{9}{8}C$ (2.31)

その結果、図 2-13(a)に示すような曲げモーメント分布が得られる。次に、せん断力分布として中央より左Q_Lと右Q_Rは、

$$Q = -(M_{ji} + M_{ij})/l = (M(l) - M(0))/l$$

$$Q_L = (\frac{9}{8}C + \frac{C}{2})/0.5l = \frac{13}{4l}C = \frac{13}{32}P$$

$$Q_R = (-\frac{5}{4}C - \frac{9}{8}C)/0.5l = -\frac{19}{4l}C = -\frac{19}{32}P$$

として得られ、図 20-13(b)に描かれる。

図 2-13(b) 部材内のせん断力分布

今までに求めた各部材の応力をまとめると、骨組全体の曲げモーメント分布およびせん断力分布が図 2-14 として示される。

2.5境界を有する
 本節では、後々のためにたわみ角法の基本式を拡張しておく。そこで、
 一端に境界を有する部材について、たわみ角法の基本式を拡張する。境
 の基本式
 の基本式
 境界条件は一端ピンの場合と一端固定の場合についてであり、この2種の
 境界条件を適用して、基本式を変更する。

まず、一端ピンについて考える。たわみ角法の基本式をもう一度、以 下に記す。

$$M_{ij} = \frac{2EI}{l} (2\theta_i - \theta_j - 3R) - C_{ij}$$
$$M_{ji} = \frac{2EI}{l} (2\theta_j - \theta_i - 3R) + C_{ji}$$

上式において、*i*端がピンの場合について考える。この場合、*i*端の 曲げモーメントはゼロとなるため、材端モーメント*M_{ij}*はゼロでなくて はならない。そのため次式が成立する。

$$M_{ij} = \frac{2EI}{l} (2\theta_i + \theta_j - 3R) - C_{ij} = 0 \qquad \dots \dots (2.36)$$

上式を整理すると、

$$2\theta_i + \theta_j - 3R = \frac{l}{2EI}C_{ij} \qquad \dots \dots (2.37)$$

となり、 θ_i は

$$\theta_i = \frac{1}{2} \left(-\theta_j + 3R + \frac{lC_{ij}}{2EI} \right) \tag{2.38}$$

で与えられる。上式を式(2.35)の下式に代入すると次式が得られる。

$$M_{ji} = \frac{2EI}{l} (2\theta_j + \frac{1}{2}(-\theta_j + 3R + \frac{lC_{ij}}{2EI}) - 3R) + C_{ji}$$

= $\frac{2EI}{l} (1.5\theta_j - 1.5R) + C_{ji} + \frac{1}{2}C_{ij}$
= $\frac{2EI}{l} (1.5\theta_j - 1.5R) + \overline{C}_{ji}$ (2.39)

ただし、 $\bar{C}_{ij} = C_{ji} + 0.5C_{ij}$ である。 以上のように、一端ピンの場合の基本式は、

$$M_{ij} = 0$$

$$M_{ji} = \frac{2EI}{l}(1.5\theta_{j} - 1.5R) + \overline{C}_{ji}$$

$$\left.\right\} \dots \dots (2.40)$$

となる。ここで、部材荷重がある場合の基本応力であるが、 両端固定として応力状態を求めるのではなく、図 2-16 に示す ように一端ピン他端固定の場合を使用することになる。

次に、i端固定の場合について考えよう。この場合、境界条件として $\theta_i = 0$ を基本式に代入すれば良い。従って、

$$M_{ij} = \frac{2EI}{l}(\theta_j - 3R) - C_{ij}$$

$$M_{ji} = \frac{2EI}{l}(2\theta_j - 3R) + C_{ji}$$

$$\left\{ \dots \dots (2.41) \right\}$$

として基本式が得られる。

2.6 課題

本節では、先の例題 2-1 を、実際に SPACE を用いて数値解析を実施し、 たわみ角法で求めた結果と比較してみよう。まず、例題 2-1 を以下に示 す。ただし、ここでは、鋼材は、SS400 を使用し、部材断面は、全て H-400x200x8x13 を使用するものとする。

図 2-7 より、曲げモーメント分布は図 2-18 となる。先端のたわみは、 式(2.10)より、次式で与えられる。使用する部材の断面二次モーメント は23500 cm⁴であり、ヤング係数は 20500kN/cm² とする。ただし、これら は SPACE のデータベースより得た値である。

$$w_{3} = \overline{w}_{3} + \theta_{2} \cdot l = \frac{Pl^{3}}{3EI} + \frac{Pl^{3}}{4EI} = \frac{7Pl^{3}}{12EI}$$
$$= \frac{7 \cdot 20 \cdot 400^{3}}{12 \cdot 20500 \cdot 23500} = 1.55cm \qquad \dots \dots (2.42)$$

次に、SPACE を用いて数値計算を実施する。まず、SPACE を起動する。 この SPACE の「ファイル」→「新規作成」メニューを用いて、「たわみ 角法演習解析モデル」-「第2章」フォルダ内の「課題1」フォルダ中 にコントロールファイルを作成する。コントロールファイルの名前を 「はね出し梁. ctl」としよう。その後、各種のコントロール情報を設定 した後、モデラーを起動する。

最初は、初期設定ウイザードが自動的にダイ アログを表示させるので、これに従ってデータ を入力すれば良い。入力仕様の詳細は、マニュ アル「モデラー使用編」を参照されたい。ウイ ザードに従って、まず、図タイトルを入力し、 次に平面フレームを選択し、構造物の規模とし て、「スパン数」を2に、階数は0にセットする。 梁の解析では、階数を 0 に設定すれば良い。次 に、図 2-22 のように、スパン長をセットする。 さらに、使用する部材断面を作成登録する。図 2-23 で鉄骨を選択し、材料は SS400 を、また、 部材モデルは弾性とする。

構造ファイルのタイトル	8
ОК	キャンセル
タイトル行数 2	内容変更
はねだし付き梁の解析	
静定骨組	
L	

図 2-19 タイトル入力

図 2-21 構造物の規模設定

図 2-23 解析材料と部材モデルの設定

X.情報 通り名

1 X1 2×2

3 X3

梁用の断面を G1 として設定する。ここでは、弾性解析で、部 材断面はひとつのみであるため、図 2-25 のように設定されて いる。要素データを設定終了した後、OK ボタンを押して、CAD 画面に戻る。

¥	素デー	タ登録										
	1	モデル	, 符 1 G1	号	名称 H-400×200×8×13	材種 S	種別 SS400	形状 H形綱	断面番号1 0	断面番号2 0	断面番号3 0	J

図 2-25 要素データ登録ダイアログで断面設定表示

再度、要素データ登録チップを押し、図 2-25 の要素データ 登録ダイアログを表示させた後、「変更・削除・復帰」ボタン を押す。この操作で、要素データ変更ダイアログが図 2-26 の

ように表示され、ここで、ヤング係数と断面二次モーメントの値を確認 する。

骨の材料断面・設定
NO.1 符号 G 1
⊙はり ○柱 ○ブレース
形状 H形鋼
名称 H-400×200×8×13 🖌 🖌
ビルドアップ断面 検索
断面性能
 DB値を採用 内部計算値を採用
OK ++)/211

図 2-24 部材断面の設定

要素デー	9変更											
要素デ	-タ 材端	データ				断面变:	E			ОК		4 t)
要素 番号	現在の 状態	符号	モデル	ヤング係数 &N/cm2)	せん断 弾性係数 &N/cm2)	断面積 (cm2)	断面極二次 モーバント (cm4)	y 朝邮所面 二次モーメント (cm4)	z 軸断面 二次モーメント (cm4)	y軸回り せん断断面積 (cm2)	z 軸回 り せん断断面積 (cm2)	第重化
1	有効	G1	1	20500.0000	7900.0000	83.37000	35.68000	23500.00000	1740.00000	30.50606	18.28942	!

図 2-26 使用断面の材料特性と断面特性の確認

図 2-27 のように CAD 画面を使用して梁を設定し、次に境界と荷重を 割り付ける。

	7pfル 表示 設定 作成	加工 147*			
В MAX Image: Section 100 (Section 100 (Se		🖸 🗢 🔍 🛄 🛄 🔟 💿	부 부 후 🔟 🕂 🖶 😁 📵 🕲 🖼 📦 📽 🕈 🜌 题 С 🕮	🗖 🗖 🗊 🕂 💁 🖇 🗖	
Set 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (ジャック ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	分相干面図		5 立面前相図(X面) 🗐	
Comparison		2891 11	92864:2846L2-34872 ↓ 12 13 13 13 13 13 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15	28H RH.122002	
■ The second	*	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			
<u>割り付</u>		rei	RHA: REILZ BEZ		図 2-27 CAD 画 で骨組モデル
					割り付け

図 2-27 の右下の子ウインドウで、 右クリックしてプルダウンメニュー を表示させ、「透視図表示項目選択」 を選択する。図 2-28 のダイアログが 表示されるので、境界と静的荷重_1 にチェックマークを入れ、OK ボタン を押すと、図 2-29 のように荷重と境 界が表示され、設定が確認される。

さらに、図 2-29 の「GL」ツールチ ップを押し、図 2-30 のように構造モ デルをソリッド表示させ、断面形状を 確認する。

構造物・質量・荷重 ▽構造物表示 ▽境界 □変位同一視節点 □主軸方向 → *** + + + + + + + + + + + + + + + + +	構造物全体表示 ●構造物全体表示 OK キャンセル
王朝大印象元、小·× 方向 書:y 方向 □部材剛域表示 □床部材	グループ表示 ○ 構造物グループ表示
質量 □ 質量1 □ 質量2	
荷重 「 新的荷重 1 計的荷重 2	○要素表示 ○構造物要素表示
動的荷重1 動的荷重2 動的荷重3	
□ 剛床グループ番号 0	エラー部材表示 〇 要素にリンクされていない部材

図 2-29 CAD 画面で境界と荷重を確認する

図 2-29 の左下の子ウインドウ で、節点情報を表示させるために、 ツールチップで、「実節点」と「集 団による設定」に変更し、骨組全 体を、マウスをドラッグして囲む。 この操作で、図 2-31 の節点情報 が得られ、設定状況を確認する。

> 図 2-30 使用断面をソ リッド表示させ、断面 を確認する

2-15

節	点情報									×
ſ	座標 局	所座標系	境界条件·岡	床 静的荷	董1 靜的i	苛重2 動的	的荷重1 動	的荷重2】動的	的荷重3 質量	ОК
Ī	節点番号	変位u(x)	変位v(y)	変位w(z)	回転θ×	回転θy	回転θz	剛床番号		
	1	-1	-1	-1	-1	-1	-1	0		
	2	0	0	0	0	0	0	0		キャンセル
	3	0	0	0	0	0	0	0		
	4	-1	-1	-1	0	0	0	0		
	5	0	0	0	0	0	0	0		
	6	0	0	0	0	0	0	0		
	7	0	0	0	0	0	0	0		

図 2-31 (a) 節 点情報を表示 させ、境界条件 を確認する

Ē	這情報											
	座標	局門	「座標系」	境界条件·岡	床 静的荷	重1 静的	荷重2 動的)荷重1	動的荷重2	動的荷重3	質量	ок
	節点番	号	Px	Py	Pz	Mx	My	Mz				
		1	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	000			
		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	000			キャンセル
		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	000			
		4	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	000			
		5	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	000			
		6	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	000			
		- 7	0.0000	0.0000	-20.0000	0.0000	0.0000	0.00	000			

図 2-31 (b)節 点情報を表示 させ、荷重を確 認する

解析モデルを全て設定した後、メニューの「ファイル」→「ファイルへの出力」を 選択すると、図 2-32 のダイアログが表示 される。ここで、「構造ファイル」と「静 的荷重ファイル_1」、情報ファイルを指定 し、OK ボタンを押して出力する。

ノア1ルの出力	
OK 構造データと情報データ 注意 い。構造データの節点番 合、質量、荷重データも	キャンセル は常に同時出力してくださ 汚などが変更になった場 司時出力してください。
☑構造ファイル	struct.dat
□質量ファイル	mass.dat
□初期変位ファイル	inidis.dat
□初期応力ファイル	inistr.dat
□ 特殊断面ファイル	fiberm.dat
■ ROモデルファイル	romodl.dat
■ 静的荷重ファイル1	sload1.dat
□静的荷重ファイル_2	sload2.dat
□動的荷重ファイル_1	dload1.dat
□動的荷重ファイル_2	dload2.dat
□動的荷重ファイル_3	dload3.dat
□ モデル設定用ファイル	Scom_M.dat
✓ 情報ファイル	info.dat
□任意型特殊断面ファイル	Toku_D.dat

図 2-32 解析モデルをファイルに出力

解析を実施する前に、解析用パラメータを設定する。まず、SPACEの メニューより、図 2-33 に示す「静的解析用コントロール」ダイアログ を表示させ、図のように設定する。線形解析であるため、1回の解析で 良いわけであるが、ここでは、アニメーションなどの表示の都合上、図 のように荷重増分法を用い、20回に分けて計算する。次に、「静的解析 の出力・解析制御に関するコントロールデータ ダイアログを表示させ、 図 2-34 のように設定する。ここでは特に、「せん断変形を考慮しない」 と応力出力にチェックマークを入れ、通常の梁モデルで解析を実施する。

図 2-33「静的解析用コントロール」ダイアログ

解析パラメータを設定した後、静的ソルバ ーを起動し、線形解析を実施する。解析経過 が、図の 2-35 に示すように図示される。図 に示されている各部材の曲げモーメントは、 図 2-18 に表示されている曲げモーメント分 布と一致している。

解析が正常終了した後、解析結果を出力表 示で確認する。SPACE のメニューより、「表 示」→「静的解析の途中経過の表示」を選択 し、解析経過と結果を表示させる。ファイル

図 2-35 解析経過の曲げモーメント表 示と変形表示

ントロールデータ」ダイアログ

の最後に出力されている 20回目の解析結果を図 2-36 に示す。部材断面 力は、図 2-18 に示す値と同じとなっている。

adie numb w 🖽 🚧 🛨	er: 0 						
番亏 部材	モテル	N×	ŴУ	Ψz	M×	My	Mz
1	1	0.0000	0.0000	30.0000	0.0000	-4000.0001	0.0000
		0.0000	0.0000	30.0000	0.0000	-0.0010	0.0000
2	1	0.0000	0.0000	30.0000	0.0000	-0.0010	0.0000
		0.0000	0.0000	30.0000	0.0000	4000.0011	0.0000
3	1	0.0000	0.0000	30.0000	0.0000	4000.0011	0.0000
		0.0000	0.0000	30.0000	0.0000	8000.0001	0.0000
4	1	0.0000	0.0000	-20.0000	0.0000	8000.0001	0.0000
		0.0000	0.0000	-20.0000	0.0000	5333.3321	0.0000
5	1	0.0000	0.0000	-20.0000	0.0000	5333.3321	0.0000
		0.0000	0.0000	-20.0000	0.0000	2666.6660	0.0000
6	1	0.0000	0.0000	-20.0000	0.0000	2666.6660	0.0000
		0.0000	0.0000	-20 0000	0 0000	0 0000	0 0000

次に静的プレゼンターを起動し、図 2-37 に示すように、せん断力図と曲げモ ーメント図を表示させる。右図と図 2-18 の曲げモーメント分布は一致しているこ とが分かる。

さらに、図 2-37 の荷重位置で、Ctrl キィとマウス右ボタンを同時にクリック することで、図 2-38 のダイアログを表示 させ、その節点の解析結果の情報を観察 する。このダイアログから分かるように、

図 2-37 プレゼンターによるせん断力と曲げモーメン ト分布の表示

当該節点の変位と式(2.42) で示される節点変位と同じ 値となっている。

図 2-38 梁先端の鉛直方向変位

本章では、たわみ角法の基本式を用いて、節点での変位(回転角)の 適合と曲げモーメントの釣合より、骨組全体の釣合式を得る方法を学ん だ。ここで得られた釣合式は、節点移動の無い場合に適用され、境界節 点を除いた節点で求められる。例題を通して、その釣合式を具体的に求 めた後、部材の材端モーメントを求める方法を学習した。また、例題に ついて、SPACEを使用して求めた断面力と、解析結果とを比較し、値の 検証を行った。

2.7まとめ

2-19

問 2-5